Exposure of Saccharomyces cerevisiae to acetaldehyde induces sulfur amino acid metabolism and polyamine transporter genes, which depend on Met4p and Haa1p transcription factors, respectively.
نویسندگان
چکیده
Acetaldehyde is a toxic compound produced by Saccharomyces cerevisiae cells under several growth conditions. The adverse effects of this molecule are important, as significant amounts accumulate inside the cells. By means of global gene expression analyses, we have detected the effects of acetaldehyde addition in the expression of about 400 genes. Repressed genes include many genes involved in cell cycle control, cell polarity, and the mitochondrial protein biosynthesis machinery. Increased expression is displayed in many stress response genes, as well as other families of genes, such as those encoding vitamin B1 biosynthesis machinery and proteins for aryl alcohol metabolism. The induction of genes involved in sulfur metabolism is dependent on Met4p and other well-known factors involved in the transcription of MET genes under nonrepressing conditions of sulfur metabolism. Moreover, the deletion of MET4 leads to increased acetaldehyde sensitivity. TPO genes encoding polyamine transporters are also induced by acetaldehyde; in this case, the regulation is dependent on the Haa1p transcription factor. In this paper, we discuss the connections between acetaldehyde and the processes affected by this compound in yeast cells with reference to the microarray data.
منابع مشابه
Metabolism of sulfur amino acids in Saccharomyces cerevisiae.
Sulfur amino acid biosynthesis in Saccharomyces cerevisiae involves a large number of enzymes required for the de novo biosynthesis of methionine and cysteine and the recycling of organic sulfur metabolites. This review summarizes the details of these processes and analyzes the molecular data which have been acquired in this metabolic area. Sulfur biochemistry appears not to be unique through t...
متن کاملMet31p and Met32p, two related zinc finger proteins, are involved in transcriptional regulation of yeast sulfur amino acid metabolism.
Sulfur amino acid metabolism in Saccharomyces cerevisiae is regulated by the level of intracellular S-adenosylmethionine (AdoMet). Two cis-acting elements have been previously identified within the 5' upstream regions of the structural genes of the sulfur network. The first contains the CACGTG motif and is the target of the transcription activation complex Cbflp-Met4p-Met28p. We report here the...
متن کاملMultiple transcriptional activation complexes tether the yeast activator Met4 to DNA.
The transcriptional regulation of the sulfur amino acid pathway in Saccharomyces cerevisiae depends on a single activator, Met4p, whose function requires different combinations of the auxiliary factors Cbf1p, Met28p, Met31p and Met32p. The first description of how these factors cooperate to activate transcription was provided by the identification of the Cbf1-Met4-Met28 complex which is assembl...
متن کاملYct1p, a novel, high-affinity, cysteine-specific transporter from the yeast Saccharomyces cerevisiae.
Cysteine transport in the yeast Saccharomyces cerevisiae is mediated by at least eight different permeases, none of which are specific for cysteine. We describe a novel, high-affinity, (K(m) = 55 microM), cysteine-specific transporter encoded by the ORF YLL055w that was initially identified by a combined strategy of data mining, bioinformatics, and genetic analysis. Null mutants of YLL055w, but...
متن کاملMet30p, a yeast transcriptional inhibitor that responds to S-adenosylmethionine, is an essential protein with WD40 repeats.
A specific repression mechanism regulates the biosynthesis of sulfur amino acids in Saccharomyces cerevisiae. When the intracellular S-adenosylmethionine (AdoMet) concentration increases, transcription of the sulfur genes is repressed. Using a specific reporter system, we have isolated mutations impairing the AdoMet-mediated transcriptional regulation of the sulfur network. These mutations iden...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 70 4 شماره
صفحات -
تاریخ انتشار 2004